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Abstract

To confine plasma adequately in toroidal magnetic fields for nuclear fusion experiments, it is essential to control the
magnetic islands caused by perturbations and non-axisymmetry inherent to stellarators. A method is introduced which
enables the perturbation harmonics of the field line Hamiltonian (which determines the size of islands and the degree
of chaos) to be approximated quickly. The method is based upon quadratic-flux minimizing surfaces which pass directly
through both the X and O points of the island chains. Using a suitable measure of island width, it is possible to utilize
standard numerical optimization methods to achieve desirable configurations. A major island chain in the H-1NF heliac
vacuum field has been made to both disappear and to reappear with opposite phase. These results have significance for
self-healing phenomena and the method is generally applicable to all stellarators and 15'—dimensi0nal Hamiltonian dynamical

systems.

1. Introduction

For the toroidal confinement of plasma, the exis-
tence of good flux surfaces (nested invariant tori of
the field line flow) is essential [ 1]. Such surfaces are
guaranteed only for configurations possessing an 1g-
norable coordinate, such as the ideal tokamak. For sys-
tems without an ignorable coordinate, such as the stel-
larator or tokamak with field ripple, the complicated
geometry implies that in general, there will exist is-
lands and chaotic regions, though the KAM theorem

! Supported by an Australian National University Postgraduate
Scholarship.

ZpPresent address: Plasma Theory Laboratory, Fusion
Plasma Research, JAERI Naka Fusion Research Labo-
ratory, Naka-machi Naka-gun, lbaraki-ken, Japan. E-mail:
stuart@ptlO1.naka.jaeri.go.jp.

3 E-mail: robert.dewar@anu.edu.au.

[2,3] gives reason to believe that some flux surfaces
will remain. It is reasonable to expect that to have good
surfaces at non-zero plasma pressure, we must begin
with nested flux surfaces for the vacuum field, as sug-
gested in Ref, [4]. However, it has been observed that
islands present in the vacuum field may “self-heal” as
the plasma pressure is increased [5,6]. With this in
mind, we might actually prefer the existence of islands
of a specified phase in the vacuum field. Ultimately,
we would like to control where islands will occur, in
both the vacuum and low pressure plasma, and their
phase and magnitude. If this information can be de-
termined quickly, and a numerical parameter reflect-
ing the desirability of a certain configuration is intro-
duced, then computer routines that construct numer-
ical derivatives in coil current configuration parame-
ter space may rapidly determine how to alter the cur-
rents to achieve the desired island structure. The Cary-
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Hanson method [7,8] was introduced with such aims
in mind. A measure of island width (namely Greene’s
residue [9]) that is reasonably quick to compute, and
goes to zero if the island vanishes, was used in com-
puter optimization routines to find vacuum configura-
tions that reduce the size of specified islands.

In this paper, we suggest a new, more efficient
method by which island width may be quickly ap-
proximated. At the heart of the approach are the
quadratic-flux minimizing surfaces introduced by De-
war et al. [10] and studied further by Hudson and
Dewar [ 11]. These surfaces, being constructed from
a family of periodic pseudo field lines (including
the true closed field lines with given rotational trans-
form), pass directly through the X and O points of
island chains on Poincaré cross sections. If we regard
the actual field as the superposition of a perturbing
field and an integrable field, the maximum compo-
nent of the magnetic field normal to these surfaces
is directly related to the amplitude of the resonant
perturbation. If also the shear of the nested system
is known, this amplitude determines the width of the
island. The method is theoretically similar to an aver-
aging procedure which identifies the amplitude of the
perturbation to an integrable field [12,13], but in im-
plementation it is similar to a more recent technique
that uses only information obtained by integrating
around a periodic curve [14]. Our technique is effi-
cient computationally, flexible and applicable to all
stellarator devices. It enables current configurations
to be found that eliminate island chains, as well as
configurations in which islands of a particular type
and phase may be preset to specified size and radial
location in the vacuum configuration.

In Section 2 we explain the construction of
quadratic-flux minimizing surfaces and introduce pe-
riodic pseudo orbits and the action gradient defined
on periodic curves. The action gradient is intimately
associated with islands and will be used as a measure
of the island widths. In Section 3 it is explained how
stellarator symmetry prevents island chains from ro-
tating as the current configuration is altered because
periodic orbits, either stable or unstable, are always
found on symmetry lines. In Section 4 the method of
manipulating magnetic islands is explained and ap-
plied to the vacuum field of the heliac H-1NF [15].
The results indicate magnetic islands may be manip-
ulated by variation of the coil current configuration,

in this application the vertical field coil currents. Sec-
tion 5 discusses how the method may be applied in a
more general approach, its relevance to self-healing
phenomena and a comparison with the Cary-Hanson
technique.

2. Periodic pseudo orbits

In considering which are the most suitable coor-
dinates for analyzing magnetic fields with some flux
surfaces and some islands, Dewar et al. [ 10] consider
surfaces that minimize the functional

B2
¢2=/2C" do, (1)
n

It

where A, = A - n, with r the unit normal to the trial
surface I, and where C is an auxiliary divergence-
free field everywhere transverse to the surface I". The
choice of C is arbitrary, but as the resulting surface
depends upon C it should be chosen with care. Typ-
ically we use C = V@ x V{ in some toroidal coor-
dinates (p,#,{), where p is a radial coordinate, ¢ a
poloidal angle and { some toroidal angle. With this
choice C is both parallel to the radial basis vector ¢, =
d,r and related to the action gradient defined on peri-
odic curves [ 11]. The arbitrariness of C is associated
with the arbitrariness of the underlying coordinates in
which the quadratic-flux minimizing surfaces are to be
constructed. Preferably, straight field line coordinates
for an assumed nearby nested magnetic field are used
though such a choice is not essential for the construc-
tion of the surfaces.

On allowing the surface " to vary, Dewar et al. [ 10]
obtain the Euler-Lagrange equation required to make
opy =0,

B, -Vv=0, (2)

where B, = B— vC and v = B, /C,. We call B, the
pseudo field and » the action gradient for surface s.
Eq. (2) shows that v is constant along a pseudo field
line and that the solution surfaces, with rational rota-
tional transform, are comprised of a family of periodic
pseudo field lines.

The action defined on curves 8 = 6y({), where the
curves are periodic and lie on surfaces of constant s, is
written § = § A - dl [16]. Considering the difference
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in action between a reference periodic pseudo orbit
60({) and an arbitrary periodic pseudo orbit 8,({),
we write

S—Sozjl{(VxB%dl:/B-da. (3)
¢ S

Here S represents the surface bounded by the periodic
curves 6, ({) and 6y({), and JS represents the bound-
ary of the surface, which is just the curves ¢; and 6,
again but with the directions of the line integral taken
in alternate directions. Varying the boundary curve to
0,({) + 86(¢), we derive the action gradient

55/ “280ds = /n o0 Waedg. (4)

We now recognize v as the action gradient 6S/86 on
the periodic curves that comprise the quadratic-flux
minimizing surface and that the quadratic-flux mini-
mization principle is essentially the minimization of
the square of the action gradient over the (4, {) do-
main.

We restrict attention to rational quadratic-flux min-
imizing surfaces, these being surfaces upon which the
rotational transform of the pseudo magnetic field lines
is a rational value & = n/m and periodic pseudo orbits
satisfy (pjsm, @jem) = (pj, 0 +2mn) where (p;,0;)
label successive points for the pseudo Poincaré map

» + (p,8) — (py,61), defined on the cross sec-
tion plane ¢ = 0, by following the pseudo magnetic
field B, for some given v (constant along a pseudo
field line). To locate the real periodic orbits we set

= 0 and search, using Broyden’s method [17] in
the two dimensions (g, 8), for the fixed points of the
mth iteration of the pseudo Poincaré map P}", which
with » = 0 is identical to the Poincaré map for the
real magnetic field. For computational efficiency a
good starting guess is given. Rather than specify v
and search for the periodic pseudo orbit as just de-
scribed, a more robust method to determine all peri-
odic pseudo orbits is instead to specify € and to search
in the two dimensions (p, ») for a fixed point of P]".
The action gradient vanishes on all good flux surfaces,
which reduces the two-dimensional search to a one-
dimensional search [11] in this case. In this manner
the function »(@) is determined on each quadratic-
flux minimizing surface. In the construction of the full

periodic surface, a periodic pseudo orbit is required at
every poloidal angle.

The intersection of a quadratic-flux minimizing sur-
face with the symmetry plane ¢ = 0 is shown as the
dashed curve in Fig. 1, along with a Poincaré plot
of the magnetic field in H-INF (see Section 4) and
a coordinate grid of the background toroidal coordi-
nates (p, €, ¢) used to construct the surface (see Sec-
tion 3). Due to stellarator symmetry, the Poincaré plot
on the symmetry plane ¢ = 0 is up-down symmetric
about the line z = 0 (see Section 3), and the signif-
icant island chain (5,3) has an O point on the out-
ward symmetry line (also discussed in Section 3).
The coordinate grid is shown as it implicitly defines
the choice of € used in Eq. (1). Importantly, the co-
ordinate cross section is up—down symmetric on the
symmetry plane. Periodic quadratic-flux minimizing
surfaces necessarily pass directly through both the X
points and O points of island chains, and this is clearly
indicated. The few parameters specifying the back-
ground coordinate cross section are chosen by hand to
match the inner nested flux surfaces, but this crude fit
is not generally reliable for all regions of the Poincaré
Cross section.

The function v (&) for this surface is shown as the
solid line in Fig. 2. Consistent with the existence of
2m X or O points are the 2m zeros of v, as will be
discussed in Section 3.

3. Stellarator symmetry

Systems with a continuous symmetry, either asym-
metric [1] or helically symmetric [18] are guaran-
teed to possess good flux surfaces. For real stellara-
tors however, both cylindrical and helical symmetry
are broken and from the outset islands are expected to
occur even in vacuum magnetic fields. Yet stellarators
are designed to have a discrete symmetry known as the
stellarator symmetry, which for example ensures that
Poincaré sections of the magnetic field on a symme-
try plane will be up—down symmetric. A system pos-
sesses stellarator symmetry if a choice of the ¢ = 0
plane exists such that the total current density satisties

JE(R, —¢,—2) = —J*(R, $,2), (5)
JP(R,—p,—2) =JP (R, $,2), (6)
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Fig. 1. Poincaré plot (dots) of the standard magnetic field in H-1NF shown on three toroidal planes (¢ = 0 on right, ¢ =27/9 on above
left, and ¢ = 477/9 on bottom left). Also shown on each section are the helically toroidal coordinate grid (solid line) and the (5.3)

quadratic-flux minimizing surface on the ¢ = 0 section (dashed curve).

SR, —¢,—2) = J* (R, ¢.2), (7)
where JX | J¢ and J* are the contravariant components
of the current in cylindrical coordinates. The equa-
tion V x B = upJ implies that the magnetic field
B will also satisfy the symmetry provided B — 0 at
infinity, and the equation defining field line flow, us-
ing the cylindrical angle ¢ as the field line parameter,
dr = R§d¢, has the property that if (R(¢),z(¢))
is a field line, then so is (R(—¢), —z(—¢)). This is
the analogue of time reversal symmetry in Hamilto-
nian dynamical systems, ¢ playing the role of time.
The plane ¢ = 0 is a symmetry plane and the line
¢ =0,z =0is a symmetry line. We see that if a peri-
odic trajectory exists, then the reflection of its Poincaré
section in the z = 0 planc will also correspond to
a periodic trajectory. The Poincaré-Birkhoff theorem
[3] ensures that after periodic surfaces have been de-
stroyed by perturbation, there will remain at least one
X trajectory and at least one O trajectory. Assuming

there is only one of each (the typical case) requires
each periodic trajectory to coincide with its own re-
flection. This is enough to show that for any given pe-
riodicity, there must be a symmetric periodic orbit on
the symmetry line [19].

If the background toroidal coordinate system is up-
down symmetric on a symmetry plane and 6 = 0 cor-
responds to the symmetry line, the guaranteed exis-
tence of the periodic orbit on this line (and the fact
that BR(R,0,0) = 0) ensures that »(0) = 0. We call
this phase locking of the action gradient, and this is
responsible for the numerically observed locked phase
property of the magnetic islands [5.6]. We expect that
the function »(8) is something like a sine curve, as
it is periodic and equal to zero for both the X and O
points. The periodic orbit on the symmetry line may
either be an X point or an O point, as this detail de-
pends on the sign of the gradient of the action gradient
on the symmetry line, sgn[2’(0) ], and the sign of the
shear of the underlying integrable system.
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Fig. 2. Behaviour of » with ¢ for the (5, 3) surface for the various
current configurations. The solid line is the v obtained for the
configuration displayed in Fig. 1, the dashed line corresponds to
the configuration shown in Fig. 3 and the dotted line corresponds
to the configuration shown in Fig. 3. The phase locking of » is
clearly indicated as all three lines pass through zero for ¢ = 0.

The amplitude of v is not determined by symmetry
but by the size of the supposed perturbation and how
well the background coordinate system reconstructs
straight field line coordinates for an integrable field.
We may estimate the island widths by recording the
maximum component of the magnetic field normal to
the quadratic-flux minimizing surface with the shear of
the pre-supposed underlying integrable system using
the expression

max (|B,|)

mle|

(8)

The maximum normal magnetic field is obtained dur-
ing the construction of the quadratic-flux minimizing
surfaces and the shear of the underlying integrable sys-
tem may be estimated from field line tracing methods.
In this application, it is not required to determine these
quantities precisely as we may use a different indicator
of island width. We simply use the maximum value of
|v| on a surface to indicate the size of the island chain.

The phase locking of the action gradient implies that
the angular location of max(|v|), 6*, cannot rotate,
though it may vary slightly. Once 8* has been located
for a particular current configuration, we may consider

it fixed as we make small variations of the currents.
Shown in Fig. 2 is the behaviour of v constructed using
the (m,n) = (5, 3) quadratic-flux minimizing surface
for the three configurations displayed in this article.
For each configuration, »(0) = 0 (which confirms the
phase locking of the action gradient) and * ~ 0.31.

Starting with the standard configuration shown in
Fig. | we define a measure, v*, of the size of the (m, n)
island and its phase to be the value of v at this angle,
v(6*). Though we have not estimated the shear, and
so cannot estimate island widths, we may utilize the
fact that the (m, n) island has vanished if »* is zero,
and the phase of the island chain is related to sgn(v™).

4. Application to H-1NF heliac

The ideas discussed in the previous sections will be
applied to the H-1NF heliac in a new method that en-
ables subtle control of the vacuum magnetic islands.
H-INF is a stellarator type toroidal plasma confine-
ment device in operation at the Plasma Research Lab-
oratory, Australian National University [ 15,20]. The
geometry of the device is periodic in toroidal angle
with periodicity length 277/3 and the stellarator sym-
metry is present in design (though there are small sym-
metry breaking errors). We denote the current config-
uration in H-1NF as a ratio between the currents in the
toroidal field coils (of which there are 36), the central
ring conductor, the inner vertical ficld coils of radius
200 cm (of which there are 2), the outer vertical field
coils of radius 72 cm (of which there are 2), and the
helical winding currents (of which there are 4) as It/
Iee/Iiv /lov/ Inw. The standard configuration shown in
Fig. 1 is 13.88/—50.00/8.33/22.22 /0.00. Setting the
current in all the toroidal field coils to the same value
maintains the period-3 nature of H-INF. With the cur-
rents in the upper outer and inner vertical coils equal
to those in the lower outer and inner coils respectively,
the stellarator symmetry of H-1NF is maintained. The
symmetries are independent of current configuration
provided these constraints are respected.

For the background coordinates, we use helically
toroidal coordinates chosen with the axis closely coin-
ciding with the magnetic axis. This enables the period-
icity of orbits to be determined by introducing poloidal
and toroidal angles & and ¢ respectively. Also, if we
are to use C = V@ x V{, then by requiring C- n to be



90 S.R. Hudson, R.L. Dewar/Physics Letters A 226 (1997) 85-92

nowhere zero on a quadratic-flux minimizing surface
we require the surfaces of constant p to be nowhere
transverse to the magnetic field. This requirement is
generally satisfied by toroidal coordinates. The estima-
tion of the resonant perturbation amplitude, »*, how-
ever is more sensitive to the choice of coordinates, as
they should be close to straight field line coordinates
for a supposed underlying nested field. A coordinate
system is chosen that has a bean-shaped cross section
that reflects the shape of magnetic surfaces in H-1NF.
This cross section rotates in the negative € direction
with periodicity 3, to match the periodicity of H-1NF,
and is centered on the magnetic axis ( which is located
in cylindrical coordinates). Three different cross sec-
tions of this coordinate system are plotted with the
Poincaré plots in Fig. 1 which shows both the bean
shaped cross section and the rotation.

For H-1NF, we modify the definition of the pseudo
Poincaré map P, to be the map from ¢ = 0 to
¢ = 27/3 obtained by following the pseudo field
B, and (m,n) periodic orbits are those that satisfy
(Pjrms Ojam) = (pj, 0; + 2mn). The rotational trans-
form in helically toroidal coordinates is &, = 3n/m,
and in a non-rotating, right handed toroidal coordi-
nate system the rotational transform is ¢ = ¢, — 3. Fig.
1 shows a large magnetic island. We will show that
magnetic islands may be manipulated by variation of
the vertical field coil currents, as suggested by Ref.
[21]. In the following discussion, the toroidal field
current, the central ring current and the helical wind-
ing current are considered constant. It is these currents
which are dominant in determining the rotational
transform on axes and thus in this application the
overall rotational transform profile varies marginally.
We consider the function

A= (" —p))?, (9

where v is to be set, indicating the desired island size
and phase (magnitude and sign of »J respectively).
From Fig. 2, we observe v* ~ —0.4 and 8* = 0.31.
To firstly remove this island chain, we set v = 0. The
configuration that minimizes A, and thus minimizes
the amplitude of the resonance harmonic producing
the island, is determined by a numerical search in the
two-dimensional, vertical field coil current space. The
subroutine EO4JAF from the NAG library was used.
For each trial configuration used to evaluate the partial

derivatives, the magnetic axis and the periodic pseudo
orbit each take about two or three iterations of the first
return or mth return map respectively. By varying the
vertical fields, it was possible to reduce A by several
orders of magnitude. To confirm that the configuration
was as desired, a Poincaré plot of the minimizing mag-
netic field is shown in Fig. 3 and the full quadratic-flux
minimizing surface was constructed. Here we see the
(5,3) island chain has become negligible in width.
Importantly the (5,3) surface is still present, so that
the (5, 3) island chain has not been eliminated by sim-
ply shifting the rotational transform profile away from
this resonance. The action gradient (shown in Fig. 2 as
the dotted curve) is very close to zero, indicating that
the family of periodic pseudo orbits is degenerate in
action and the quadratic-flux minimizing surface has
reduced to the periodic flux surface.

The island chain may be recreated, but with the X
and O points having swapped their location, by set-
ting »; = 0.4 (equal in magnitude but opposite in
sign to that observed for the initial configuration) and
again minimizing A. A Poincaré section of the opti-
mized configuration is shown in Fig. 3 where we see
the (5,3) island chain has changed phase by 180°.
The quadratic-flux minimizing surface passes through
both the X and O points of the islands. The behaviour
of v is shown as the dashed curve in Fig. 2. In this
instance, »* was not close to the set value vj. It is at
least positive, and so the A minimization has swapped
the phase of the island. The size of the island chain in-
dicated by the Poincaré plot is comparable to the size
of the initial island chain, so perhaps the local shear of
the underlying magnetic shear has also been reduced,
compensating for the lower estimate of the resonant
perturbation amplitude. A better estimate of the reso-
nance amplitude is provided by the maximum normal
component of the magnetic field to the quadratic-flux
minimizing surfaces.

We observe that for this configuration region, the
vertical field coils provide a means to “fine-tune” the
configuration. Such results are interesting in associ-
ation with self-healing of islands. This indicates the
self-healing of magnetic islands may result from a ge-
ometrical mechanism as suggested by Mikhailov and
Shafranov [21]. Such results also indicate the flexi-
bility of the stellarator design.
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Fig. 3. Poincaré plots for the configurations that reduce the (5,3) island chain (shown on left) and the configuration that produces a
significant (5, 3) island chain with the phase flipped (shown on right). The (5, 3) quadratic-flux minimizing surface is shown for cach
configuration as the dashed curve. The configurations are similar to that shown in Fig. 1, with alterations only to the vertical field currents.

5. Discussion

In this paper, only one island chain was considered
and no attention has been given to the radial position
of the island. The shear of the system has not been ex-
amined, and no estimate of the shear of the assumed
underlying integrable system is provided. This paper
has only utilized the resonant perturbation amplitude
and phasc in its analysis and control of magnetic is-
lands, and relied on the assumption that the rotational
transform profile of the configuration is not altered
significantly. This assumption is justified if only small
variations are made to the vertical field coil currents
only. A more general approach is to extend the defi-
nition of A given in Eq. (9) to consider more island
chains, and to allow all the currents to vary in a five-
dimensional minimization. In this case, the rotational
transform may vary quite significantly and a contri-
bution to A, perhaps of the form (p* — pj )y* for each
island chain, should be made. Here pj is the preferred
radial location of the periodic orbit at 6%, and p* is
the actual location of the periodic orbit for a particular

trial configuration. An exponent of 4 strongly restricts
the configuration to ensure the periodic orbit is near
the chosen value. A coordinate-independent measure
of the resonance amplitude is provided by using the
maximum normal component of the magnetic field to
the quadratic-flux minimizing surface. If several island
chains are to be examined, then a good estimate of the
shear of the somewhat arbitrary underlying integrable
system is provided by using a few low order rational
periodic orbits as these are likely to be the least dis-
placed with resonant perturbations. The islands con-
sidered in this Letter are quite low order, as these are
cheaper to evaluate computationally, requiring less it-
erations of the Poincaré map and are likely to the
biggest islands present. H-1NF is a low shear device,
and since low order resonances are to be avoided, in a
more complete analysis we would be forced to work
with higher order rationals. For practical purposes, it
may be required to increase the volume occupied by
nested flux surfaces by focussing attention upon island
chains that arise near the edge of the plasma region
[8].
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The Cary-Hanson technique requires the real peri-
odic orbit to be located and the tangent mapping ap-
proximated at that point. A similar number of itera-
tions of the Poincaré map is required to locate the real
periodic orbit as for the pseudo periodic orbit, so the
techniques will be comparable in the location of orbits.
The Cary-Hanson method needs to evaluate the tan-
gent mapping further, so requires more computation
after the orbit is located. In our method, some com-
putational overheads are required prior to the location
of the periodic orbits, namely the construction of Fig.
2 to determine 6. This value may vary slightly as the
configuration is varied about some average position,
but this has little effect on the success of the method.
In practice, the zeros and maxima of || for any given
surface vary very slightly as shown in Fig. 2. The extra
calculations required in updating the background co-
ordinate system as the current configuration is varied
is not essential as the magnetic axis varies marginally
and thus may be omitted.

Controlling the size and phase of islands in the vac-
uum field of H-1NF enables one to set vacuum currents
which oppose the growth of islands caused by non-
zero plasma pressure. This is an important aspect of
adequately confining the plasma. Experimental verifi-
cation of the island manipulations in H-1NF is possible
using the techniques described in Ref. [20]. It would
be interesting to examine the results of the HINT [5]
code to the magnetic configurations obtained in this

paper.

6. Conclusion

By working in a coordinate system that is tied to the
invariant periodic sets associated with chaotic island
structure (the periodic orbits), a natural parameter of
island size is derived. This parameter is essentially
the component of the magnetic field normal to the
coordinate surface that passes though both the X and O
points. It provides a quick, robust and accurate method
of estimating both the phase and size of islands of
arbitrarily high order. Such estimations have enabled
optimization routines to manipulate vacuum magnetic
islands enabling suitable current configurations to be
obtained.
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